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ABSTRACT

The study defined under Contract NAS8-28358 consisted of four parallel

efforts: (1) Modal analyses of elastic continua for Liapunov stability analysis

of flexible spacecraft; (2) Development of general-purpose simulation equations

for arbitrary spacecraft; (3) Evaluation of alternative mathematical models

for elastic components of spacecraft; and (4) Examination of the influence of

vehicle flexibility on spacecraft attitude control system performance.

This report includes a complete record of achievements under tasks (1)

and (3) above, in the form of technical appendices, and a summary description

of progress to date under tasks two and four.

Task (1) has provided the basis for the Ph. D. dissertation of Andre Colin

(see Appendix 3, in Volume 2 of this report). This task in itself required two

phases of investigation: modal analysis and stability analysis. The modal

analysis is accomplished for a range of continuum models (strings, beams

and thin plates with various boundary conditions on spinning spacecraft) by

means of singular perturbation methods, and the stability analysis is accom-

plished by using Liapunov theorems with the momentum-constrained Hamiltonian

as the testing function.

Task (2) is the basis for the Ph. D. dissertation of Arthur S. Hopkins,

which is still in progress.

Task (3) is the subject of two technical papers by the Principal Investiga-

tor, included here as Appendices 1 and 2. In these papers the range of appli-

cability of various discrete and continuous models of nonrigid spacecraft is

examined. It is concluded that there is a domain of engineering applicability

for each of the models considered, but that finite elements models are

generally the most valuable for flexible spacecraft simulations.
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Task (4) is currently receiving primary attention by the Principal

Investigator and a postdoctoral scholar, Dr. Yoshiaki Ohkami. Results

will be described in forthcoming documents.
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SUMMARY CONCLUSIONS AND RECOMMENDATIONS

The primary qualitative conclusion emerging from this study concerns

the relative utility of the several alternative mathematical models of elastic

structures that have been advocated and used by various space organizations

in recent years. Work emanating from or supported by Goddard Space

Flight Center, for example, is very often based on elastic continuum models

of flexible spacecraft; the Aerospace Corporation relies almost exclusively

on multiple-rigid-body models of nonrigid vehicles; and the Jet Propulsion

Laboratory has recently emphasized the use of finite element models of

flexible structure. A major objective of the present study has been to

weigh the advantages of these several approaches and to establish the range

of utility of each.

The paper "Mathematical Modeling of Spinning Elastic Bodies for

Modal Analysis" (see Appendix 1) presents a comparative evaluation of

elastic body models in terms of their suitability for modal analysis. This

is a critical consideration, since the use of modal coordinates for elastic

body deformations in hybrid coordinate analysis is now almost universally

accepted as the optimum procedure for spacecraft simulation. It is the

conclusion of this paper that the elastic continuum model is appropriate for

a small class of commonly encountered appendages, but in most situations

the finite element model is preferable, because the modal analysis equa-

tions are linear, constant-coefficient ordinary differential equations when-

ever any discretized elastic structure is vibrating about a state of rest or

constant spin in inertial space. The continuum equations for an appendage

in the same motion may be linearized about an equilibrium solution (if such

can be found from the nonlinear equations of elasticity), but the equations

of motion are then generally linear, variable-coefficient partial differential

equations.
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Appendix 2 is a paper ("Geometric Stiffness Characteristics of a

Rotating Elastic Appendage") in which two features of the geometric stiff-

ness matrix are explored. This matrix defines the stiffness characteristics

induced in a finite element model of an elastic structure by preload, such

as that due to spin. It is demonstrated by example in this paper that the

geometric stiffness matrix can be asymmetric, and that this result can

counterbalance a kinematical stiffness matrix which is also asymmetric

so as to produce a symmetric total stiffness matrix. This possibility was

overlooked in a previous UCLA study for MSFC, so that the present work

extends the applicability of the results developed under that previous con-

tract (No. NAS8-26214).

Because the class of situations in which the continuum model is

attractive includes many structural appendages found on spacecraft, this

model was adopted for one phase of our study, as reflected in the disserta-

tion of Andre Colin appearing as Appendix 3 in Volume 2 of this report.

In this study singular perturbation theory is applied to a series of partial

differential equations describing small vibrations of various elastic struc-

tures about a steady state of equilibrium deformation induced by spin.

Solutions are obtained by the method of matched asymptotic expansions.

The elastic bodies accommodated here are taut strings, beams, taut mem-

branes, and thin plates. In each case the small parameter (E) measures a

normalized nondimensional ratio of bending stiffness to spin, so the results

are applicable to structures with low bending stiffness and/or high spin.

The results of the modal analysis are then incorporated in an attitude

stability analysis, using the momentum-constrained Hamiltonian as a test-

ing function in two Liapunov-type theorems. Results are then compared

with those obtained by Barbera for discretized models of elastic appendages.
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A major effort under the present contract has been invested in the

development of a general formulation of equations of motion of a space-

craft idealized as an arbitrarily interconnected set of elastic bodies, each

of which is modeled by means of finite element techniques. This study will

result in the Ph. D. dissertation of Arthur S. Hopkins. The general problem

has proven to be quite difficult, but we have preferred to extend the dura-

tion of our study rather than compromise scope or analytical integrity.

Copies of this dissertation will be provided to MSFC when the work is

completed, in late 1973.

The emphasis in this report, as in the report on the preceding con-

tract, has been on problems of dynamics and stability analysis, rather

than on problems of active control. This has seemed to be a necessary

ordering of priorities in the past, but it has always been understood that

once the problems of dynamic analysis were resolved the emphasis in our

work would shift to control system analysis and synthesis. This transition

has already occurred in the later stages of the present study, although

results are still too preliminary to warrant exposition here. In this con-

tinuing effort, the principal investigator is working with Dr. Yoshiaki

Ohkami, a control system specialist from the Japanese National Aerospace

Laboratory who is working as a postdoctoral scholar at UCLA. The results

of this promising joint effort will be reported as they emerge. It is the

central recommendation of this study that continued support be given to

the investigation of the influence of vehicle flexibility on the performance

of active attitude control systems.
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ABSTRACT

The problem of modal analysis of an elastic appendage on a rotating

base is examined with the following objectives: (a) To establish the relative

advantages of various mathematical models of elastic structures, including

the elastic continuum model, the distributed-mass finite element model, and

the concentrated mass model; and (b) To extract general inferences concern-

ing the magnitude and character of the influence of spin on the natural fre-

quencies and mode shapes of rotating structures. In realization of the first

objective, it is concluded that except for a small class of very special cases

the elastic continuum model is barren of useful results, while for constant

nominal spin rate the distributed-mass finite element model is quite generally

tractable, since in the latter case the governing equations are always linear,

constant-coefficient, ordinary differential equations. Although with both of

these alternatives the details of the formulation generally obscure the essence

of the problem and permit very little engineering insight to be gained without

extensive computation, this difficulty is not encountered when dealing with

simple concentrated mass models, which permit determination of the general

inferences sought in objective (b) above.

Preceding page blank
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INTRODUCTION

The literature on flexible spacecraft dynamics is proliferating at a rate

which reflects the serious concern of the aerospace community for this prob-

lem. Many investigators in this field now employ some system of hybrid

coordinates for dynamic analysis, using a combination of discrete coordinates

(for the translations and rotations of rigid bodies or reference frames) and

distributed or modal coordinates (for the deformations of elastic bodies).

Although various idealizations have been adopted for mathematical models of

1-7deformable vehicles or vehicle appendages, including elastic continua 7

8
distributed-mass finite element systems8 , and elastically interconnected

9-15nodal body systems , in every case when modal coordinates are

employed some rationale for the selection and truncation of these coordinates

must be established.

The purpose of this paper is to address the problems of mathematical

modeling and modal coordinate selection for an elastic appendage attached to

a rigid base which is constrained to rotate with a constant angular speed Q

about a body-axis fixed in inertial space. As shown in many of the references

(e. g., Ref. 8), the modal coordinates appropriate for fully constrained base

rotation are often also appropriate for a hybrid coordinate representation of

deformations of an elastic appendage attached to a rigid base which freely

maintains the nominal constant angular velocity when the appendage deforma-

tion remains at its constant, steady-state value, but which differs slightly

from the nominal constant angular velocity due to appendage deformational

perturbations.

Although the restriction to a constant nominal base motion is formally

necessary for the development of a rational policy of coordinate selection,

it may be expected that experienced engineers will find the results of this

1-5 Pleceding page blank \



special case applicable informally to a wider range of engineering problems

than we indicate here.

Modal analysis of an idealized vibrating elastic structure on a rotating

base requires the derivation of the linearized equations of small oscillatory

deviation of the mathematical model from its constant state of deformation

induced by spin, and the transformation of these equations into a system of

uncoupled equations of motion in terms of normal mode coordinates. This

would be an infinite system for a continuum model, and a finite set for a

discretized model, but in either case substantial truncation of the modal

coordinates is generally a practical necessity.

The indicated approach to modal analysis is however not always the

easiest path, and it is tempting to consider a shortcut, employing for the

flexible appendage on a rotating base the coordinates which would be normal

mode coordinates if the appendage base were inertially fixed. (This has been

the practice in several of the referenced papers). Whether or not this short-

cut is acceptable in engineering practice depends of course on the application.

Our purpose here is to try to provide some guide for the analyst who

wishes to determine the influence of base rotation on flexible appendage normal

mode shapes and natural frequencies, so that engineers responsible for flex-

ible spacecraft simulations will have some basis for modeling decisions and

coordinate selection. We shall discuss the elastic continuum model, the

distributed-mass finite element model, and the concentrated mass model.

The reader interested primarily in results of practical utility will find his

greatest reward in the final third of this paper, where a single-particle model

provides useful engineering insight into the general problem of rotating flexible

appendages.
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ELASTIC CONTINUUM MODEL

General Theory. Hamilton's principle permits the construction of equations

of motion of any conservative, holonomic system in the form

t 2

6 (T - V)dt = 0 (1)
Jti

where T is the kinetic energy, and V the potential energy (which for the free

elastic body of interest is the strain energy). The variational symbol implies

a path variation in state space from fixed end-points at t 1 and t 2 .

The kinetic energy T may be written as

T A R * R M' dx dy dz (2)

where M' is mass per unit volume and R is the inertial time derivative of a

position vector R locating a differential volume dx dy dz from an inertially

fixed reference point 0. For the problem at hand, we can fix point 0 on the

spin axis of the rotating base, and replace R by its representation in terms

A A Aof dextral, orthogonal unit vectors e, e y, ez fixed in the base, to obtain
-x-y' --Z

A ~AA
R = (x + u)ex + (y+ v)ey + (z+ w)e (3)

where x, y, and z are constants which establish the Cartesian coordinates

for an origin at 0 of the field point when the continuum is undeformed, and
A A A

u, v, and w are respectively the ex , ey, and ez projections of the relative

displacement of the material point originally at (x, y, z) to its location

in the deformed state. If the inertial angular velocity of the base is given

by
A

w = Q e (4)

then R becomes

'A + 'A * A A A
ue + ve y e + w + 2(x+u)e - (y+v)e (5)

-and for an arbitrar-y --rotating appendage the kinetic energy may be written as
and for an arbitrary rotating appendage the kinetic energy may be written as
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-2
T = [2 + ~2 + 12 2 +2(x+u)2 + 2(+

+ 2=(x+u)v - 2Q(y+v)x / t' dxdydz (6)

Even in the case of large strains, the strain energy of a nondissipative,

homogeneous, isotropic body is given by 1 6

V = 1 a':,V = - | l ,T 1 E dxdydz (7)

Twhere o-' A o* a]I- xx yy zz xy yz zx is the matrix of "general-

ized stresses", and

T
E A [Exx eyy Ezz exy Eyz Ezx ] (8)

is the matrix of strains. The "generalized stresses" in a * are related to

the actual stresses by a relationship (Ref. 16, p. 79) which we symbolize by

the matrix equation

a. = (U + e) (9)

7T
where the matrix of actual stresses is a A Ixx [ ayy Czz axy (Yyz azx J U

is the 6x6 unit matrix, and e is a 6 x6 matrix which equals zero when all

strains are zero.

For arbitrarily small strains (still permitting large relative displace-

ments and angular rotations within the continuum), the distinction between

generalized stresses and actual stresses is lost. Moreover we can then

assume the validity of Hooke's law, which may for brevity be written in

matrix terms as

a = S E (10)

where S is a symmetric 6x 6 matrix depending on material properties. Under

these assumptions, the strain energy integral becomes

V = 1 E TS E dxdydz (11)
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Thus in the general case of small strain vibrations of rotating elastic

continua one can combine Equations (11), (6), and (1) in order to obtain

equations of motion to be subjected to modal analysis. This combination

implies the replacement of e in Equation (11) by functions of u, v, and w,

using the strain-displacement equations of elasticity theory. This step

introduces a major difficulty because in general (even for the small strain

problem) one must use the nonlinear strain-displacement* relationships16

a2 a ~2 a 2]
axx= ax + 2 aux + ax) + | (12)E ~ - I(12)XXc ax 2[\aX , \ax/

av i[(au \2 +ayv ) aw 21S \ + I(13)yy ay 2 ay/ 2\ay / bay / j

e aw+ a1 auu) +( av) +(aw | (14)zzE 2z Dz a2 z

E au av au au aavav aww w(15)cx =- + -x + -- -+-- + - (15)
xy ay ax a ay ax ay ax ay

E - av aw au au + avav + aw w¢ y - + -- +2 ' y awa (16)a ay ayaz ay z ay az

e au + w u auu + v av + aw (17)
zax fz ax f-axaz ax az

The requirement for the retention of second degree terms stems from

the fact that steady state deformations induced by constant rotation are not

arbitrarily small, and cannot be included with the arbitrarily small deviations

from the steady state deformations in the linearization process. Perhaps

the most convincing way to demonstrate the necessity of retaining nonlinear

terms in these equations for the general case is to establish their importance

in one specific case for which both linear and nonlinear analyses are available.

The shear strains ExyI Eyz ezx are often defined with an additional factor

of 1/2 for convenience in tensorial representation.
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Since nothing further can be accomplished in general terms, at this point we

focus on special cases, choosing first a problem for which the linear approx-

imation of strain-displacement equations will suffice, and choosing next a

problem for which retention of nonlinear terms may be essential.

So great are the difficulties of nonlinear elasticity that applications to

rotating vibrating structures in the literature are apparently restricted* to

beams, either directed along the spin axis (axial beams) or radiating from

the spin axis at right angles (radial beams), References 1 - 7 treat these

special cases, as do References 19 and 20, which provide alternatives to a

modal description which may be useful for stability analysis of deformable

elastic continua. Because of the importance of the rotating axial beam or

shaft in machinery dynamics, and the importance of the radial rotating beam

in propeller and helicopter rotor dynamics, the behavior of these beams has

been examined extensively. In order to illustrate the difficulties of the

general problem of rotating elastic continua, we shall briefly examine these

special cases, using the general nonlinear strain-displacement equations when

appropriate, rather than the ad hoc procedures typically employed in the

literature when only the special case is of interest.

Axial beams. When an elastic beam is aligned with the spin axis, it

experiences no steady state deformation, and this eliminates the need for the

nonlinear terms in Equations (12)-(17). Thus the axial beam uniquely offers

a way around the problems of nonlinear elasticity, rather than a special

case for which these equations can be solved.

We ignore here those applications to vibrating taut strings and membranes
which embody the assumption of constant tension, since with this assumption
the influence of rotation is discarded. Nor are we concerned here with the
applications of Equations (12y - (17) in formulating a "large" static deflection
theory for beams or plates' or in elastic stability theory for beam-columns
or orthogonally loaded plates1 8 .

1-10



The equation of small vibration of a classical beam in directions x

and y normal to the spin axis (and the beam axis) along z may be shown by

the indicated procedure to be 2

P(z) a 2u + aa2U Wu - 2tdZ.) Q av = Q (18)
at az [ za2u a2au

where u and v are displacements from the undeformed state as previously;

a (z) is the beam mass per unit length; E is the modulus of elasticity of the

beam material; I x(z) and I y(z) are the area second moments or "moments of

inertia " of the transverse cross-sections of the beam, assumed principal.

Boundary conditions for a cantilevered beam of length L become

a3U 3
u(0) = v(°) = 2f(Q) =-av(0) = a2u(L) = a2v (L) -(L)== 0 (20)az az az - az 2y az aZ3

The influence of the base rotation is clearly manifested in the spin rate

, which appears in Equations (18) and (19) in the form of centripetal

accelerations and Coriolis accelerations. The latter terms couple the

equations, and provide an obstacle to modal analysis except in the special

(but common) case for which r (z) is the constant lr, and x and I are the

same constant, say I. For the uniform, axisymmetric beam, one can

define the complex variable q = u + iv and write Equations (18)-(20) as

q" - 2q + 2i Rq = 0 (21)

and

q(0) = q' (0) = q" (L) = q"'(L) = 0 (22)

The classical, or Euler-Bernoulli, beam ignores both shear deformations
and rotatory inertia.
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where dot denotes temporal differentiation and prime denotes spatial differ-

entiation. Equation (21) admits the separated solution

q(z,t) =  (z)q(t) (23)

where the complex functions 4 (z) and r(t) satisfy the ordinary differential

equations

fli _tI_ ( 2 + 2 )A = 0 (24)
EI

and
,

+2i~Ž+o~ 0(25)n + 2iQ77+ y 2n = 0 (25)

obtained by substituting Equation (23) into Equation (21), dividing by rq, and

equating the resulting separated functions of z and t separately to the constant

2. Equation (24) has the boundary conditions

(0) = 0 '(0) = k "(L) = 4'" (L) = 0 (26)

and Equation (25) is an initial-value problem to be solved only after Equation

(24) yields the characteristic values of a2 which permit nontrivial solutions

(z).

Equation (24) has precisely the form of the classical result for a fixed-

base cantilever beam (see Reference 21, page 162); if 0 is written as 01 + i02

we can see that actually we have two distinct but identical equations for 0 1

22and 42 in the classical form. Familiar beam vibration theory2 1 provides a

transcendental equation to be solved numerically for the infinity of solutions

for (G2 + r2), beginning with

1+ a12 = 12.36 EI/(,L 4 ) A , 2  (27a)

2

2 + 2 = 485.32EI(L ) A W2 (27b)

2 + 32 = 3806.89EI(ML 4 ) A W (27c)2+ 3 (27c)
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2 Al2 + a .2
and continuing with 2 A 2 + 2 for j ranging to infinity. Literal solutions

for the "mode shapes" 0 l (Z) and 0 2 (z) are available in terms of circular and

hyperbolic trigonometric functions, with exactly the same functional structure

as for fixed base cantilever beams 2 1 , but with the trigonometric function

argument dependent upon 2.

Whereas for the fixed-base cantilever beam the natural frequencies are

given by the expressions recorded as w. above, the twofold influence of spin

on the rotating axial beam natural frequency is, firstly for centripetal acceler-

ations, to reduce w. to aj. , and secondly for Coriolis accelerations, to change
J J

each a. into the two frequencies obtained as the characteristic roots of
3

2 2
Equation (25) (with a = a ). These roots are the solutions of the character-

istic equation.

X 4 + .2(2 2 + 4 Q2) +4 = 0 (28)
3

which are given by

2 2  22 (X. a. 2 C? + 2- /2. + g (29)
3 3 -3

In terms of the fixed base cantilever mode wj, these roots are given by

- (W + )2
X2 = -( w.+ 2 + 2Qwc.j = (30)

)2
- (oj- s2

Thus the natural frequencies of vibration of an axisymmetric, axial beam

with respect to its rotating base are given by

Pl. = ° - ; P2 = .j + (31)

.thwhere L. is the jth natural frequency of the same beam on a fixed base and
3

2 is the spin rate. Evidently a spin rate in excess of the fixed base natural

frequency produces instability.
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Although Equation (24) indicates that both real and imaginary parts of

the spatial function 0 (z) = 1 (Z) + i 2 (z) must satisfy a differential equation

of the same structure as that providing the fixed-base cantilever modes 2 1 '

these functions can be interpreted as "mode shapes" only with the recogni-

tion of phase relationships between u and v associated with modal oscillations.

Specifically, if Equation (23) is expanded in terms of its real and imaginary

parts, and if an infinite series of such expansions comprises the general

solution, we find

u(z,t)+ iv(z,t) = E O (z)rJ(t) = E l(z)+i2J(z)][l(t)+ ir2J(t )
j=l j=1 ljz 42z)

= I [i(z)r 1 ij(t) - 4 2j(z) 2i(t)] + i [02i(z)r1 ji(t) + Olj(z)rn2j(t)] 1(32)j=1

When Equations (24) and (25) are solved for 1J(z), 02 i (z), nl1 (t), and r)2(t)

we find the general free vibration solution

u(z,t) = sin j L - Sinh 1j L) (sin Ojz - Sinh Pjz)
j=l 1

+ (cos 3j L + Cosh .j L) (cos 1jz - Cosh 3jz)] [Ajcospl t + Bjsinpl t

+ C jcosP2 t + DjsinP2 t] (33)
J J

v(z,t) = [sin 1j L - Sinh 1j L) (sin Ojz - Sinh Pjz)

j=1 L

+ (cos 13j L + Cosh .j L) (cos 1jz - Cosh 1jz)] [Ajsinp, t - BjcosPl t

j (3

- CjsinP2 t + DcosP2 t (34)
j j
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4 2where LOj4 A 2 p/E I and the constants Aj, Bj, Cj, and D. are established
J J J2

//by initial conditions. The four possible single-mode oscillations associated

with Aj, Bj, Cj, and Dj all involve a circular motion of each point on the

beam axis, with u and v always ninety degrees out of phase; the two rotations

at frequency p1 are in the same direction as the vehicle rotation, differing

only in phase, while the two rotations at frequency P2 have the opposite sense.
P2

Hence from Equation (31) it is apparent that to an inertially fixed observer

the beam axis appears in these two normal modes of vibration to be main-

taining a fixed geometry while each point on the axis traverses a circular

path in inertial space at the frequency 0j, with these normal modes differing

only in the direction of the indicated circular motion. The striking aspect

of this analysis is the degree to which the characteristics of fixed-base

vibrations survive the imposition of base spin. In this respect, the axisym-

metric uniform beam directed along the spin axis is unique.

If the axial beam is nonuniform or structurally asymmetric, virtually

all of the preceding analysis fails (beginning with Equation (21) ). To

analyze the uniform but asymmetric case, we can rewrite Equations (18)

and (19) as the matrix equation.

u 1+ e ° u' u -1 u
+ EI + 2: o

v 0 1-e v "" v 1 0

(35)
where I A (Ix + I ) and E A 1 (I - Iy). Guided by our experience with

= y =2I x y

the axisymmetric beam, we can assume a solution of Equation (35) in the

product form
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= (36)[2 [ I:] e Xt A eXt (36)

Xtand obtain, by substitution and cancellation of e t ,

'"' + /I [(X2 - 2 ) a + 2QG]+ e J X'"' = °0 (37)

where

-O -1 -1 O-

G A and J 1

I 0

For the axisymmetric case E - 0, and the previous solution suggests that

Equation (37) will be satisfied by discrete values of X satisfying Equation (30)

augmented by Equation (27), and

= (38)

y +_ i

2.
where q is a real scalar satisfying Equation (24) for values of 2 given by

Equation (27). In the case of the uniform asymmetric axial beam, however,

with e •0 , one can no longer construct the solutions cD and X directly from

previously recorded solutions for the fixed base cantilever beam; it becomes

necessary to approach Equation (37) directly, either using numerical eigen-

value-eigenvector analysis or (if e is small) a perturbation analysis.

The nonuniform axial beam, with one or more of the quantities p(z),

I(z) , and e(z) depending upon z, presents even greater challenges to modal

analysis, because the linearized equations of motion no longer have constant

coefficients.
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Radial Beams. When an elastic beam is normal to the spin axis of its

inertially rotating base, it does sustain deformations in the steady state con-

figuration in which it remains straight and aligned with a radial line emanat-

ing from its base. Therefore one must use nonlinear strain-displacement

equations such as Equations (12) - (17) if deformation variables are to be

measured from the undeformed state. Although the influence of radial beams

3on the stability of a spinning satellite has been published since 1969, and the

numerical modal analysis of such beams has been accomplished many times

(see References 6 and 22, for examples of equatorial and meridional vibrations

respectively), the underlying equations of motion are typically derived by

means of procedures which rely from the outset upon the availability of

solutions for the steady-state load distribution and deformation of the elastic

continuum, permitting the incorporation into Equation (1) of an expression for

work done by an "effective applied load". This is an ideal approach for rotat-

ing radial beams (see Reference 21, page 440 ff. for example), but for a

general elastic continuum the availability of a steady state solution is not a

viable supposition, and the "effective external load" concept is not easily

implemented.

In order to demonstrate the relationship between the general theory

(employing nonlinear strain-displacement equations) and the special theory

repeatedly used in application to the beam in the literature, we shall derive

in what follows the equations of meridional vibration of the uniform rotating

radial beam, obtaining the classical results (Reference 21, p. 443) in a

manner that maintains its validity in the more general case.

For the special case of the uniform radial beam whose axis parallels
A
e y, vibrating only in the meridional direction (see Figure 1), it is customary

to ignore those deformations u which are present only because of the Poisson
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effect, and to assume that w depends only upon y; moreover, under the

assumptions of classical (Euler-Bernoulli) beam theory, the terms in T

involving v and v are also ignored (see Equation (6) ). (The consequences

23of this latter restriction are explored in a recent paper23 on the vibrations

of a rotating "Rayleigh beam". ) Thus for this very special problem the

kinetic energy in Equation (6) reduces to

T =T+ = a dxdyTdz

L L 2

=T+ dy TO +- d = A- dy (39)
=T 0 + 2 0 Pow

where TO is a constant and j is the mass per unit length.

Simplifications in T in this special case are more than matched by

simplifications in V, since for the classical beam all strains are ignored

except the normal longitudinal strain, which here is ¢yy. With proper sub-

stitutions for S in Equation (11) the strain energy becomes

V= E 5-yy dxdydz (40)T¢yy ddd

According to Equation (13), the nonlinear strain-displacement relationship to

be substituted next should be (neglecting u)

2v F(v + 2 (41)
eyy = ay 2 ay + ay) (41)

but at this point yet another simplification is permissible for the radial beam,

if we recognize that for this particular problem we can easily separate the

deformations from the undeformed state into the steady-state extensional

deformation (which we designate v0 (y) ) and the deviation from that steady

state. Then v may be expressed as

v v0 - z ay (42)
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(assuming as usual that plane sections remain plane) and Equation (41) becomes

av a2W 1 av a2 W 2 2
e y ° y 2 + - v z 24+( 2 )] (43)

ay ay ay ay ay

Although unsatisfactory approximations result from linearization of

Equation (43) in all deformation variables, a much improved approximation

of Equation (40) can be obtained by retaining quadratic terms in functions of

w and assuming that functions of v0 can be ignored when compared to unity.

This approximation preserves in Equation (40) products of av0 /ay with

second degree terms in the slope aw/ay, while abandoning similar products

with second degree terms in a 2w/ay . The result is the approximation

E aV a2W 2( 22 w + av 0 (aw )+
12z- 2  %w 2 57y a)Jdxdydz+IV02 a L y .2 ay2

ay (44)

where V0 is the steady-state strain energy, which does not involve w. Upon

integrating Equation (44) over x and z, noting that z dz = 0, SSdxdz AA,

the cross-sectional area, and z2 dxdz A I, the area second moment

about the x-axis, we find

EICL a2w)2 EA aL 0 (a 2
V = y ay dy+ _- - , dy+ V0  (45)

_ O ) S ay (ay )

At this point one can recognize the equivalence of this derivation and

the familiar textbook derivation for the transverse vibrations of beams sub-

ject to an external axial force P(y), since to the first approximation one can

substitute the relationship

P() av 0= E ay (46)

into Equation (45), and combine the result with Equation (39) into Equation (1)

to obtain
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[L 2 E L 2 2 2 )w dy

-2V[( dt = 0 (47)

Routine execution of the variations and integrations implied by Equation (47)

produces the equation of motion

El -a P(Y) a ]+ a2 (48)

Ty 4  D-5y t 3 - / daty

where we rely upon the arbitrary magnitude of 6w and the absence of such

variations at t 1 and t 2 and where the boundary conditions

2 3w(O)=2X(dy- Dw

wy() =0 (L) = (L) = 0 (49)
ay aDy

have been utilized in the course of repeated integrations by parts.

For the rotating uniform radial beam, the steady state axial force is

given by L

P(y) =y a2 dr =-O 1 A 22 ( L2- y )

so that Equation (48) takes the form

-w 1 LL2 y2) 2 - 2y at 2 (50)

El 0 4  w  S (L _y) 2yw53 + /I w - 0 (48)

ay 2aL y2 y at

With the derivation of Equation (50) the immediate objective of this section

has been realized; this is a standard first approximation of the rotating beam

meridional vibration equation 2 , and wee have made explicit the oft-

disguised necessity of including nonlinear terms in the strain displacement

equations when deformations are measured relative to an undeformed state.

Now we can safely conclude that any "general theory" of vibration of rotating

elastic continua must also meet this stipulation (although this fact is
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unmentioned in the noted references). When one reviews the long series of

cascading approximations that lead from the general equations (1), (6), and

(11) for the small strain problem to the equations of motion for the meridional

vibrations of the uniform radial beam, it becomes clear that a "general theory"

has practical value only for that very small class of problems in elasticity

for which one can find steady state solutions about which to linearize the

oscillatory deformations, and even in this case implementation of the general

theory may be very difficult .

Even for the uniform radial beam, which is next to the uniform axial beam

the simplest special case imaginable, the equations of motion do not yield to

simple eigenvalue-eigenvector analysis, because the linearized equations in

the deformation variable w have nonconstant coefficients (see terms involving

y and y in Equation (50) ). Even for this relatively simple problem one must

turn to more elaborate or very approximate numerical procedures, such as

Galerkin's method, Rayleigh's method, or a perturbation approach.

It seems safe to conclude that only for the simplest of configurations is

it feasible to extract meaningful conclusions from an elastic continuum model

of a rotating flexible appendage. In the following sections we shall explore

other options, including the distributed-mass finite element model and the

concentrated mass model.

FINITE ELEMENT MODEL

Reference 8 contains a detailed derivation of the equations of vibratory

deformation of a distributed-mass finite element model of an elastic appendage

attached to a rigid base having arbitrary motion, with particular attention to

the present problem of contant base rotation. Our purpose here is to examine

those equations in order to assess the relative difficulties of working with

continuum models and finite element models, and to explore the consequences

of rotation for the latter.
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Let it first be understood that the model consists of an arbitrary number

of elastic elements, each of which has an arbitrary number of points of

contact in common with neighboring elements or the supporting rigid body.

Each contact point is called a node and at each of the n nodes there may be

located the mass center of a rigid body called a nodal body; the interconnect-

ing elastic elements may however also have distributed mass. It is funda-

mentaI to the finite-element "assumed displacement" approach to modeling

that the internodal elastic bodies are assigned a pattern of deformation in

terms of the deformations at the nodes by means of an interpolation function

(called W in Reference 8). Thus the system has a finite number of degrees of

freedom established by the number of nodes; in Reference 8 the six independent

kinematical coordinates describing deformational displacements from a steady

state of the n rigid nodal bodies are accepted as the unknowns characterizing

the appendage deformation, so that the appendage has 6n degrees of freedom in

deformation. If the 6n by 1 matrix q contains the 6n variables representing the

deviations of these nodal bodies from the steady state of deformation, then the

equations of vibration may be shown to be (Reference 8, Equation (164), with

no damping).

M'q4+ G'j + K'q + A'q = 0 (51)

where M', G', K', and A' are 6n by 6n constant matrices, with M' and K'

symmetric and G' and A' skew symmetric.

Procedures for coordinate transformation (modal analysis) of Equation

(51) are developed in Reference 8, and will not be reviewed here. It is suffi-

cient to note that Equations (51) are constant coefficient, linear, ordinary

differential equations to establish the relative simplicity of modal analysis

of finite element models in comparison with continuum models. A numerical

eigenvalue-eigenvector analysis will always suffice; the major complication
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introduced by rotation is the introduction of complex eigenvectors. Terms

in Equation (51) introduced by spin include centripetal accelerations, coriolis

accelerations, and modifications of structural stiffness due to spin-induced

loads on the structure in its steady state (the so-called "geometric stiffness").

The last of these influences is developed in Reference 24 more generally

than in Reference 8. The physical and mathematical significance of each of

these contributions is explored for a simpler model in the section following.

CONCENTRATED MASS MODEL

Because in Reference 8 a rigid body or particle is concentrated at each

node, Equation (51) establishes also the structure of the equations of vibra-

tory deformation of a model for which all mass is concentrated in the form

of a single particle or rigid body suspended on massless springs. While this

is in many cases an unjustifiably coarse approximation, it brings the advan-

tage of equations of motion which are so simple that one can extract from

them general conclusions that may serve as a guide to the behavior of more

complex continuum or finite element models.

For a single particle on springs, the equations of motion are so simple

that their inspection reveals a great deal about the system's' vibration char-

acteristics. Three such systems are shown in Figure 2. In each case a

particle of mass m is attached by a massless three-degree-of-freedom spring

Amechanism to a base with prescribed inertial angular velocity Q e
3

When Q = 0, the equations of motion in each case are

2mu1 + k 10 u =0 or u 1 + 1 0 u 0 (52)

mu 2 + k2 0 u2 = 0 or u2 + 2 0 u2  0 (53)

2 20 2u3 + k3u = 0 or u 3 + a 3 0 u =0 (54)m 3 30 3 3 30
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where, as shown in Figure 3, u1 , u2 , and u3 are orthogonal displacements

of the particle from the position occupied when the springs are undeformed.

We assume that the three spring constants k1 0 , k2 0 and k30 are character-

istic of each of the mechanisms in Figures 3a, b, and c. When &2 •0, the

equations become

rrm - 2m Q u2 + (kl - m 2)u 1  = 0 (55a)

10
mu2 + 2m Q2 il + (k2 - m &2)u = 0

2 1 2 2(56)
mu3  + k3 u 3  = 0

or

-2Q&2 2(5au1 - 2 Qt2 + (a1 - Q )u1 = 0 (57a)

2 2(57)
u 2 +2 1 1 + (22 Q )u2 = 0 (57b)

*0 2
u3 + y32u3 = 0 (58)

where now u1, u 2 , and u3 represent orthogonal displacements from the

position occupied in the steady state in which the particle is located with
A

respect to the inertially fixed point 0 by the vector L e . Because the

spring mechanisms have different stiffness characteristics in the loaded

state induced by rotation than in the unloaded state, the spring constants

k 1, k2 , and k3 generally differ from k 10 , k2 0 , and k3 0 . In addition to this

change (identified as the geometric stiffness in the preceding section), the

influence of rotation is manifested in Equations (55), (56) in the centripetal

accelerations and the coriolis accelerations. In what follows we shall

consider these influences individually, and attempt to draw general conclusions

about the contributions of each to the natural frequencies of particle

os cillations.

As is clear from Equations (55) or (57), the centripetal accelerations
A

reduce the effective stiffness in the equatorial plane (normal to e 3 ), and
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have no influence on the mreridional vibration (in the B e, e plane). The
2 3

coriolis accelerations also make no contribution to the meridional vibration,

but these terms couple the two orthogonal vibrations in the equatorial plane,

2 2 2
influencing both vibration frequencies. If we define 12A a12 - 2 and

22 A a 2
2 - 2 ,and assume for definiteness that w1 < w2' then we can

artificially isolate the coriolis influence by recording the characteristic

equation for Equations (57) as

-2 2
I + W'> -_2 QXi

= (X2+(.o1 2 ) (X2+,w2 2 ) + 4 0222 = 0

2 Q X X2+ 2 22

If we now formally permit Q to range from zero to infinity and construct a

root locus plot, we find that X = + iw1 and X = + iw2 for 2 = 0 (corresponding

to roots obtained by neglecting the coriolis terms), while for Q - co we

have essentially X4 + 40 2 2 = 0, providing X = + oo. Thus we see that the

coriolis influence is to elevate the higher frequency in the equatorial plane

and to reduce the lower frequency, as compared to those frequencies which

would be obtained if centripetal accelerations and geometric stiffness due

to spin were accommodated but coriolis accelerations were ignored.

The influences of centripetal and coriolis accelerations on each of the

mechanisms shown in Figure 2 are the same, since these are purely kinematic

phenomena. The geometric stiffness previously alluded to is a phenomenon

of structural mechanics, however, and it differs for the three structures

shown.

For the mechanism in Figure 2a, the steady state rotation leaves the

spring within the tube with a tensile load of magnitude mnL 2 . If we

imagine a displacement u 3 , we can see that this spring force develops a
A 2 2

component in the e direction of magnitude -mL62 (u3 /L) = -mQ2 u3 ; this is
3
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equivalent to the addition of an effective spring constant m Q2 , so that in

Equations (56) and (58) we have

k m 2 2 2 2 (k3 = k30+ m and 3  3 0 +2 (59)

Similar arguments provide

~2 122k I = k 10 + m 2 anda 2 = 1 0
2 +2 (60)

but leave k2  k and (a2 2.2 2 0  2  20 . Thus for the system in Figure 2a, one

could replace Equations (57), (58) by

2
u 1 -2 5Žu 2 + u10 l = 0 (61a)

u 2 + 2 u 1 + ( 2 0
2 -2)u 2 = 0 (61b)

U3 + ( 3 0 + 2 )u 3  0 (61c)

For the mechanism in Figure 2b, however, the steady state rotation

places no load on the spring in the tube, influencing only one of the rotary

springs, and there is no geometric stiffness contribution. Thus for this

system Equations (57), and (58) are simply

u1 - 2 2 + (cr1 0
2 - )u 1  0 (62a)

{ 2 Q + ( 2 _l + (20 ) u2 = 0 (62b)

.. 2
3 u 0 (62c)
+ (30 u3 =0

Finally, for the mechanism in Figure 2c, the steady state rotation

places a compressive load of magnitude m Q2 L on the spring within the

tube, and the result is an effective spring constant for u3 and u1 given by
2

-m . Thus Equations (57), (58) for this system become

2 2 ~u 1 - 2 QU2 + (c1 0  2 )U = 0 (63a)

{U2 +2Q 1 i + (U 20  
2 )u2  = 0 (63b)

u3  + (302 2 )
3  = (63c)u3+ (a -3 0 -2 )u3 =0 (63 c)
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These three examples illustrate the range of influences of rotation on

natural frequencies of vibration. In summary, we can say that centripetal

accelerations always reduce oscillation frequencies in the equatorial plane,

and coriolis accelerations cause further reduction in the lowest of these

frequencies and increase in the highest frequency. Neither centripetal nor

coriolis accelerations influence meridional vibrations. The geometric

stiffness terms which reflect the change in behavior of the structure due to

load may contribute terms of magnitude comparable to centripetal accelera-

tions, but the sense of their influence on frequency cannot be specified

generally, since this depends on the structure.

For purposes of comparison with the behavior of the idealized system

shown in Figure 2a, we next consider the massless radial elastic beam with

a tip mass m, shown in Figure 3. It will suffice to consider the geometric

stiffness in the direction of u 3 .

While we could approach this question with the variational methods of

the preceding sections, it may be more instructive to build upon more tradi-

25tional foundations. According to Timoshenko , a uniform cantilever beam

of unstretched length L subjected to a tensile axial force of magnitude P

develops a lateral (bending) stiffness given (after some manipulation and

specialization of the simply supported beam case in the reference) by

k3(P°2 [I _(P-oo) I~
3 k3 0 (pL)[1 -(L ) Tanh pL[ (64)

where the lateral stiffness with no axial load is

k3 0 = 3EI/L 3 (65)
30 0

and where p A (P/EI)1/2 with E designating the elastic modulus of the

beam material, and I designating the area second moment of the beam cross-

section.
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When P is the consequence of spin rate 2 (see Figure 3), the beam

stretches in its steady state to length L, and for a massless beam with a tip

mass m we have

P = mL E (66)

and1/2 1/

pL =( ) 0  () (67)0 E 0/ 30o/

2 2If we now define a32 A k3 /m and a3 0  = k3 0 /m, and divide Equation (64) by

2by m Q2 we find

(a) (3 L)( anh x)
(- o ( x (68)(68

where

X A( 3L)1/2 (69)

Comparison of the geometric stiffnesses of the massless elastic beam

with tip mass shown in Figure 3 and the spring mechanism shown in Figure 2 a

reduces to comparing Equations (59) and (68). This comparison is particularly

convenient when << a 3 0, since then x << 1 and Tanh x = x - x + 12x 5+...

so that Equation (68) produces

3 3 L 1 + 2x2x2L

With Equation (69), this result provides (after multiplication by Q2 )

2 2 E23 A 30 + 1.2 (70)

where the ratio (L/Lo ) has been replaced by unity. The similarity of

Equations (59) and (70) offers some perspective on the question of physical

significance of the mechanism shown in Figure 2a; even for the extreme case
of relatively small spin rate, this mechanism is not very different from aof relatively small spin rate, this mechanism is not very different from a
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beam in its geometric stiffness characteristics. For large values of 2/aI30 '

Equation (70) is invalid, and a numerical comparison of Equations (68) and

(59) is required. Table 1 shows the results of such a comparison, and

establishes the range of validity of Equation (70).

2

Eq. (59) Eq. (68) Eq. (70)

0 1.00 1.000 1.20

0.1 I 1.01 1.061 1.21

0.5 1.25 1.405 1.45

1.0 2.00 2.184 2.20

5.0 26.00 26. 199 26.20

10.0 101.00 101.200 101.20

Table 1. Comparison of Equation (59) for Figure 2a mechanism and

Equation (68) for massless elastic beam and Equation (70) for beam

approximation.

CONCLUSIONS

In this paper we have explored the problems of modal analysis of elastic

appendages on a rotating base, considering elastic continuum models, dis-

tributed-mass finite element models, and concentrated mass models of

appendages.

Although the continuum model is ideal for an axial beam, and not

infeasible for the radial beam (both within the usual limitations of beam

theory), there seems to be a very real practical limit to the class of problems

for which meaningful conclusions can be extracted by means of a continuum
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model. Perhaps a thin circular plate normal to the spin axis would prove

tractable (see Reference 26 for a related investigation); elastic membranes

can be accommodated; and higher order beam approximations and geometries

of motion can be considered with some success (see References 23 and 27); but

the limitations in implementation are so severe that there seems little to be

gained from a general formulation of the problem.

In contrast, the distributed-mass finite element model always leads to

linear, constant-coefficient, ordinary differential equations (see Equation (51))

for the small elastic vibrations of an appendage on a base with an inertially

constant body-fixed angular velocity vector. Thus this seems to be the most

promising model for most rotating elastic structures. Although one can

extract from the detailed structure underlying Equation (51) some general

conclusions concerning the influence of spin on mode shapes and natural

frequencies (observing for example the "softening" influence of centripetal

accelerations on structural stiffness, and noting that coriolis or gyroscopic

coupling terms introduce second order differential equation eigenvectors

composed of complex numbers) 8 still the algebraic complexities of a

distributed-mass finite element model are so great that one obtains little

useful insight into system behavior from these equations.

Concentrating all of the mass in a finite element model of a structure

into a large number of nodal bodies changes only the detailed structure of

the vibration equations; Equations (51) still apply. This step might be taken

at the modeling analyst's discretion (perhaps even with restriction to nodal

particles), but the vibration equations which emerge are no more or less

difficult to subject to modal analysis (except that advantage might be taken

numerically of a diagonal or tightly banded mass matrix in some cases).
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In order to gain useful insight into system behavior, we have in the

penultimate section of this paper considered concentrated mass models, con-

sisting simply of a particle on springs or a particle on a massless beam.

For these models we have quantified the several influences of base rotation

on modal characteristics, namely centripetal accelerations, coriolis acceler-

ations, and geometric stiffness induced by structural loads in the steady

rotation state. It is the conviction of the authors that thorough understanding

of these very simple models is a necessary first step for the analyst who

seeks to evaluate the influence of spin on the modal characteristics of a

structure by means of more elaborate models.
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APPENDIX 2

GEOMETRIC STIFFNESS CHARACTERISTICS

OF A ROTATING ELASTIC APPENDAGE

Peter W. Likinst

University of California, Los Angeles, California

Introduction

In Ref. 1 there appear equations of motion which characterize the small

time-varying deformations of a distributed-mass finite element model of an

elastic appendage attached to a rigid body having arbitrary motions. Ref. 2

provides the equations of motion of a dynamical system of interconnected rigid

bodies, each of which has attached to it a nonrigid appendage. In concert

these two references establish the basis for a generic digital computer pro-

gram to be developed for the simulation of nonrigid spacecraft. The purpose

of this note is to strengthen Ref. 1 by one subtle but significant generali-

zation and one correction and elaboration.

A Generalization

As shown in Ref. 1, (see Eq. (164), with damping excluded), if one

assumes a distributed-mass, finite-element model with mass present also in

the form of rigid bodies concentrated at each node, and chooses to character-

ize the unknowns as the 6n small linear and angular deformational displace-

ments of the n rigid nodal bodies relative to some nominal state, and assembles

these in the 6n by 1 column matrix q, then the ordinary differential equations

of appendage vibratory deformation have the form

M'4 + G'4 + K'q + A'q = L' (1)

where M' and K' are symmetric and G' and A' are skew symmetric matrices. If

*-
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the base to which the appendage is attached rotates at a constant rate about

an inertially fixed axis, then the coefficient matrices in Eq. (1) are

constant, and L' = O.

It is important in some cases to recognize that the steady state stress-

ses in a rotating elastic system can contribute to the skew-symmetric matrix

A' by means of an asymmetric "geometric stiffness matrix", and that the result

can be the elimination of the troublesome matrix A'. These possibilities are

precluded in Ref. 1 by the seemingly insignificant assumption that nodal body

incremental rotations are sequential rotations about permanently orthogonal

axes. As a consequence of this assumption, the generalized force E cor-

responding to a nodal body rotation $J of the jth body is the a component ofa-
th

the torque TJ applied to the j nodal body, since by first principles

.= T - T a = Tj  (2)
Qa - a a

In the general case, 3 /a$ a , and one must make a distinction between

and Tj . (An example of this kind is shown in the following Section). The

matrix designated L in Ref. 1 can always be interpreted as the matrix of

generalized forces; only for the special case treated explicitly in Ref. 1 is

the interpretation of L as a matrix of scalar components of force and torque

for orthogonal axes (as in Eq. (19) of Ref. 1) a valid interpretation. Thus

we can broaden the scope of Ref. 1 (to include for example the problem in the

following Section) simply by extending the meaning of L, and establishing for

each problem a specific relationship between Q and Ta. A possible implica-

tion of this generalization for the geometric stiffness matrix is established

in the example following.
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Illustration of Asymmetric Geometric Stiffness Matrix

Consider the rigid body B supported in a rotating housing body A by

means of spring-mounted massless gimbals B' and A', as shown in Fig. 1. Note

the dextral orthogonal sets of unit vectors of corresponding labels in the

'figure (e.g., b2, b' 3 and b , b2 ). Imagine that there exists a steady-

state motion for which B maintains a fixed relationship to A, while the mass

center C of B remains fixed in inertial space and A maintains the constant

inertial angular velocity Q, fixed somewhere in A but not parallel to a1, a2,

or a 3. Imagine further that in this steady state all unit vectors of like

index are aligned, so that the gimbal hinge axes are orthogonal. In this

state B is rotating at a constant rate about a nonprincipal axis, so that a

body-fixed torque must be applied to B by means of the elastic springs at the

three gimbal hinge axes parallel to a - a' a =b', and b b3. Rota-
-1 -l' z-2- -2 :3- '

tions of the corresponding angles from the unstressed state to the proposed

steady state are designated Al, A2 and A3, and the corresponding spring1' 2' 3 '

constants are kl, k2, and k3, so that in the steady state the torque applied

to B is given by

T -k Ab -k Ab -kAb
-O klll- 2 22-2 3 k3-3

(3)
= 1klAl 1  - k22a-2 k33a-3

When body B is perturbed from its steady state orientation relative to A,

the expression for the torque T applied to B becomes perhaps surprisingly com-

plicated. If 01, 02' 83 are gimbal rotations from the steady state correspond-

ing to axes parallel to al at a- - b, and b'- b respectively, then
-1 =Z-I' :-2 -:-2' :3 :3 rsetvlte

the inertial angular velocity of B becomes

+ o aL + 62a2 + b' l (4)n o 3i3

and our immediate knowledge of T is limited to the observations
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A

a,I1
82

Figure 1. Rotating Rigid Body on Spring-Mounted Gimbals
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T al = - kl(A1 + 1)

T a2 = - k2 (A2 + 02) (5)

T b - k3(A3 + 03)

Although one can manipulate these expressions algebraically to obtain

T in any vector basis, such as al, a2, a3, present purposes are best served

by calculating first the generalized forces

9W

Q AT - T a = - kl(Al + 0 )

aw
Q A T T *a'2 k (6)

202 A:- k2 (A2 + 02)
02

aw
Q A T - - $. b = -

3 3 k3(A 3 + 03)

To obtain the matrix T representing

define the matrices

TAT _ 2 ; A

a3
[1

Q-
QA Q2 ;E

[3q3

T in vector basis a, a, a3, we can

a

W * a2 ;

i~3

0 1

A {02

03

and write

/9T

Q = ( - TI T: ai /

finally inverting to obtain
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-1

Dw1

361

awl

ae2 a62

W3

361

aw3

362

3

3

aw1  aw2  DW

a63  a63  a6

In this case a little algebra provides

sin_ + al(6i + 03 sin 02)

+ a2( 2 cos 01 - 03 sin 01 cos 02)

+ a3(6 3 cos 01 cos 02 + 02 sin 01)

so that in the linear approximation

71 0 0 -1

T - 1 1 Q

02 -01 1

T1 0 0

T2 0 1 -01

T3  -02 1 1

It is perhaps more illuminating to

T = -k 0A - k 0 - kA0

where A 'A [A1  A2  A3] and

ko 0 k2  0 ; kA A

-0 0 k3

-k 1 (A1+01) -k 1 (Al+01 )

-k2 (A2 +02 ) -k2 (A2 +02 ) + k3 A301

-k 3 (A3+03 ) klA I02-k2A260 -k3(3+ 3)

record this result in the form

(12)

0

-k3A3

L+k2A 2

0

0

-klA1

0

O-

(13)
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thereby revealing the asymmetric character of the "geometric stiffness matrix"

kA induced by the load existing in the springs in the steady state.

According to Eq. (60) of Ref. 1, the equation of rotational motion of B

must be

T= Q I + I + [ I - (IQ)-+ IQ]6
(14)

+ {2 n-¥ [Q(ln) ~ +  (I) ~] 2¥

where I is the inertia matrix of B in its own vector basis, Q A [Q · a1

Q a a 3]
T , and the tilde operator has a significance illustrated by

° -23

A Q3  0 - (15)

=fi2 1 °-

Thus it follows from the existence of 0 8 0 as a steady state solution

for Eq. (14) that

-k0A = PIQ (16)

By scalar expansion of the expressions in Eqs. (8) and (13), noting Eq. (10),

we find the linear approximation

T -1 1
kG 6 -Ua k A
A [ ko

which with Eq. (16) becomes

kA[ [ -] 2 (17)

It is with this interpretation that one must consider the final equations of

vibration in the form

IO + [P - (m)"+ IT]O

i+ {I - 2 [Q(Im)+(I)] + k0 (IQ) + k1}0 = 0 (18)
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recognizing that the asymmetric form of kA retrieves the possibility that the

matrix coefficient of e may be symmetric. For this illustrative example, one

can extract from Eq. (16) the expression

1 (I2-I 3)Q 203/k; l

2 A A = - ko lIQ = (I3-Ii)Q3 i/k2  (19)20 L
A 3 (Ii-I2)Si22/k3

and combine this result with Eq. (13) to find the geometric stiffness matrix

[0 0 0

I )Q 0 0(20)kA = (I2-I1)~1S2 0

(I -I3)Q31 1 (I3-I2)Q23 0

By expanding other terms in the coefficient matrix of 8 in Eq. (18), one finds

dramatic simplification, and Eq. (18) reduces to the form

I + [QI-(IQ)+ I] + [ IS-Q(IQ) (IQ) ] = 0 (21)

Equation (21) has the classical form adopted by vibrating rotating systems,

with the coefficients of 0 and 0 symmetric and the coefficient of 6 skew sym-

metric.

The importance of this example stems from its demonstration of the

possibility of retrieving the symmetric form of the overall "stiffness matrix"

in the final equation of vibration. This result is reassuring, since it

conforms with the fact well-known in Lagrangian mechanics that it must be

possible to structure the equations of motion of any linearized, conservative,

holonomic system so as to obtain a symmetric coefficient-matrix for the

generalized coordinates.

A Correction for Nonlinearities

Reference 3 indicates the importance of retaining certain nonlinear terms

in the strain-displacement equations for the determination of the stiffness

characteristics of an elastic continuum vibrating relative to a deformed state.
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The second purpose of this addendum to Ref. 1 is to indicate that these

nonlinear terms were incorrectly omitted in that development, and to show how

these nonlinearities can in some cases contribute to the geometric stiffness

matrix of the finite element model.

In Ref. 1 the 6 by 1 matrix of the element stresses induced by steady

state rotation is denoted a', and the corresponding strain matrix is called

El. The incremental (variational) stress and strain matrices are designated

a and E respectively. Under the restriction to small strain (but without fur-

ther restriction on deformational displacements), we can record the element

strain energy 6/as

_T IT= (T + a(£ + 'T E)dxdydz2fff (
(22)

= 1ff (N-T+ ET)(a -+ U")dxdydz

and the variational strain energy by (Eq. (21) of Ref. 1) would be

t= fff [6 ET(¥ + ')+ (T + E' )6+ ] dxdydz (23)

If now we record Hooke's law in the matrix form

a = SE (24)

where a and E are total stress and strain matrices, and S is symmetric, then

Eq. (23) becomes

* =fff ET(_ + a')dxdydz (25)

in conformity with Eq. (21) of Ref. 1. However, in Ref. 1 only the linear

approximations of the strain-displacement equations are substituted for E

into the variational strain energy, and this we can now recognize from Ref. 3

to be insufficient if the influences of steady state stress on structural

stiffness are to be fully accommodated. Accordingly, we now consider the

appropriate additional terms to be added to Ref. 1.
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In terms of the matrix notation of Ref. 1, the strain displacement

equations analogous to Eqs. (12) - (17) of Ref. 3 but descriptive of the

relationship between incremental strain matrix £ and the matrix w of incremen-

tal displacements wl w-2 and w3 can be written as

- - 1 ( )--
£ = Dw + (w A) w (26)

*

where the operators D and A are defined in terms of local orthogonal coorr

dinates i, n, and C by

3/2~ 0 0a o o

o a/an o

o o a/aT
DA

- alan a/a~ o

o a/ac alan

a/ac o a/ap

and

A aa a a a 2 a 2 2 21
A 17 = ita ane A1 Ad 7C 2~ a5n 2T an _w 2 A 1d

Equation (26) is a nonlinear generalization of Eq. (14) of Ref. 1. When

this result is substituted into Eq. (25), and second degree terms in w are

preserved when multiplied by the steady-state stress matrix a', the result is

the addition of the new term

--*T.-- A -- *T
y kay - y pWTWA ' dv y (27)

to the variational strain energy in Eq. (21) of Ref. 1, and correspondingly

the new term kAy to the expression for interaction force and torque in Eq. (34)

These operators will be treated as matrices, but caution must be exercised in
preserving a meaningful sequence of operations; in Eq. (26), for exampie,2the
operation w A precedes the transposition, and such "products" as w1 2 a an

are understood to mean the operator 2 a---'
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of that paper. Here y is the 6.A'by 1 matrix of incremental displacements of

the .nodes of the finite element, and kA is the element geometric stiffness

matrix. (The existence of this matrix is noted in Ref. 1, but no specific

instructions for its construction are provided there.)

Summary and Conclusions

This addendum has had the objectives of expanding the scope of Ref. 1 and

correcting a deficiency in that work which resulted from the neglect of certain

potentially significant nonlinear terms in the strain-displacement equations.

Even with the deeper appreciation of the subtleties of the mechanics of rotat-

ing finite elements reflected in this addendum, there remain many unanswered

questions relating to the suitability of specific finite element models. The

next step should be the detailed evaluation of the behavior of various finite

element models of simple rotating structures, with the objective of evaluating

the consequences of modeling decisions which are routine for nonrotating sys-

tems but potentially critical for rotating structures.
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